

Metal, Alloys, & The USS KIDD

Numerous metals and alloys were used in the construction of the USS KIDD. In its simplest definition, an alloy is a mixture of a metal and another element. Different metals and alloys have different strengths, weaknesses, and properties. The most common alloy found in the makeup of the KIDD is steel. Steel is an alloy made up of iron and carbon and, at times, other trace elements. The skin or sides of the ship consist of steel that is 3/8 inch thick. Steel is very strong and durable, but when exposed to water or oxygen in the air, a chemical reaction will occur, causing it to corrode, or rust. To prevent this, the steel surfaces aboard ship are painted with a protective layer to prevent corrosion.

Brass is another common alloy found aboard ship. Brass is a bright, shiny metal alloy mostly made of copper and zinc, with other elements sometimes added in such as aluminum, arsenic, tin, or lead. Brass is very malleable (soft), non-magnetic, and corrosion resistant. It has low-friction properties and favorable resonance qualities. For these reasons, brass is used for plumbing fixtures, ammunition powder casings, ship's bells, and more.

Bronze is an alloy similar to brass except that it is made up of copper and tin mostly in varying amounts for different uses. Compared to brass, it is a darker, reddish-brown in color. Like brass, it is resistant to corrosion and is non-magnetic. Unlike brass, it is stronger and has greater resistance to metal fatigue. The KIDD's propellers are made from bronze, as are the cables and turnbuckles on the railings, the dogs on the hatches, and the anchor windlass.

Zinc bricks called "sacrificial anodes" are attached to the KIDD's steel hull near the bronze propellers. The flow of water around the hull, particularly around the propellers, produces a static electrical charge. This occurrence in an area of dissimilar metals—the steel hull and the bronze propellers—can cause accelerated corrosion. The zinc anodes dissolve into the seawater faster than the nearby steel or bronze and thus slow the deterioration of the nearby metals to a more normal rate of decay.

Copper can be found throughout the ship in wiring, plumbing, and the ship's boilers because of its resistance to corrosion and superior electrical conductivity. Platinum was used in some of the radar and sonar equipment due to it being very malleable and ductile, as well as its resistance to corrosion under high temperatures. Aluminum was used to replace some of the KIDD's superstructure and decks due to its corrosion resistance, light weight, and durability. However, the Navy stopped using aluminum in destroyer hull construction because of its lower melting point during fires as compared to steel. 1. Using the Periodic Table on Page 3, find each of the following elements and list their chemical symbol and atomic number:

	a.	Iron	f.	Tin	
	b.	Carbon	g.	Arsenic	
	C.	Copper	h.	Lead	
	d.	Zinc	i.	Platinum	
	e.	Aluminum			
2.	What is an "a	lloy"?			
3.	Name three (3	3) alloys found aboard the USS KIDD:			

- 4. Based on the previous paragraphs, what chemical reaction is of greater concern among all of the metal alloys aboard a ship like the USS KIDD? Give its scientific and common name.
- 5. "Friction" is the force resisting the motion of surfaces sliding against one another. Friction can produce a static electrical charge, as well as heat. In which use aboard the KIDD would the low-friction property of brass be most important?
- 6. Class Discussion: What can you find in your school or in your home that uses the same metals and metallic alloys found aboard the USS KIDD in the same or similar manners?

18 VIIIA 8A	Hellum 4.00260	Neon Neon 20.1797	Argon Argon 39.948	6 Krypton 83.80	54 Xenon 131.29	B Radon 222.0176	18 UUO unknown		_	
	_					-	117 Unuseptium unknown	71	Lawrencium [262]	
	16 VIA 6A						Ununhexium 1388		E	
	15 VA 5A	Nitrogen 14.00674	15 Phosphorus 30.973762	33 Asenic 74.92159	51 Sb Antimony 121.760	83 Bismuth 208.98037	115 Uunpentium unknown	69 Tableton 101		ctinides
	14 IVA 4A	6 Carbon 12.011	14 Silicon 28.0855	32 Germanium 72.64	50 Suntaina	PD PD 207.2	114 Ununquadium [289]	68 Erbium 167.26		Lanthanides
nts	13 3A	5 10.811 0.811	13 Aluminum 26.981539	31 Gallium 69.732	49 Indium 114.818	81 Thailium 204.3833	Ununtrium Ununtrium unknown	67 Holmium 164.93033		
Elements			28 BB 23	30 Zinc 65.39	48 Cadmium 112.411	BO Mercury 200.59	Coperticium Coperticium	66 Dyspressium 162.550	Californiu 251.0796	Noble Gas
			12 8 8	Copper Copper 63.546	Ag Silver 107.8682	79 Au Gold 196.9665	111 Rg ^{Contgenium}	65 Tb Terblum 158.92534	Berkellum 247.0703	Halogens
of the			4	28 Nickel 58.6934	Paladium 106.42	Platinum 195.08	DS Parmstadtium [269]	64 Gadolinium 157.25 96		Nonmetals
			9 VIII 8	27 Cobalt 58.9332	to subdum	17 Indium 192.22	109 Metimerium [268]	63 Europium 151.9655		Semimetals
Periodic Table			∞ -	B6 Fe	Ruthenlum 101.07	76 Osmium 190.23	Hassium [269]	62 Samarium 150.36		
odic			7 VIIB 7B	Panganese Manganese 54.938	H TC 98.9072	PS Rhentum 186.207	107 Bohnium [264]	61 Promethum 144.9127	Neptunium 237.0482	n Metal
Peri					-		Seaborgium [266]	60 Neodymium 144.24	Uranium 238.0289	Transition Metal
					v -	_	105 1 Dubnium s	59 Praseodymiur 140.90765	Protactinium 231.03588	Alkaline Earth
							I04 Interfordium I261]	Section Content 140.115		Alkali Metal
					94 Yurium Yurium 88.90585	17	39-103 1	57 Lanthanum 138.9055 89	Actinium 227.0278	
	2A IIA 2A	Beyllium 9.01218	-		38 Strontum 87.62		~	Lanthanide Series Actinide	Series	
1 11 11	Hydrogen 1.0079		-	1000	37 Rubidium 85.4678	-	100000000000000000000000000000000000000	Lanti Se	Š	

Teacher's Answer Key

1. Using the Periodic Table on Page 3, find each of the following elements and list their chemical symbol and atomic number:

a. Iron	<u>Fe 26</u>	f.	Tin	<u>Sn</u>	50
b. Carbon	<u>C 6</u>	g.	Arsenic	<u>As</u>	<u>33</u>
c. Copper	<u>Cu 29</u>	h.	Lead	<u>Pb</u>	82
d. Zinc	<u>Zn 30</u>	i.	Platinum	<u>Pt</u>	<u>78</u>
e. Aluminum	<u>Al 13</u>				

- 2. What is an "alloy"? <u>A mixture of a metal and another element.</u>
- 3. Name three (3) alloys found aboard the USS KIDD: <u>steel, brass, bronze</u>
- 4. Based on the previous paragraphs, what chemical reaction is of greater concern among all of the metal alloys aboard a ship like the USS KIDD? Give its scientific and common name.

Corrosion, also known as rust.

5. "Friction" is the force resisting the motion of surfaces sliding against one another. Friction can produce a static electrical charge, as well as heat. In which use aboard the KIDD would the low-friction property of brass be most important?

Ammunition powder casings – a static electrical charge or generated heat could produce an explosion.

6. Class Discussion: What can you find in your school or in your home that uses the same metals and metallic alloys found aboard the USS KIDD in the same or similar manners?

Answers will vary but may include the following: steel in the structural framing of the building; copper, brass, or bronze tubing or parts in the plumbing; aluminum siding on a house; aluminum on water fountains; copper in electrical wiring; copper or bronze in the building's hot water heater (identical to a boiler, just with lower temperatures); platinum and copper in electrical components like radios, televisions, game systems, computers (KIDD has radios and a fire control computer).